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Homochiral polypeptides, poly(L-Leu-L-Lys), and poly(D-Leu-
D-Lys) exhibited the same activity (66.2% and 68.8% hydrolysis, 
respectively), whereas the racemic polypeptide, poly(D,L-Leu-
D,L-Lys), which is unable to adopt a /3-sheet structure,13,14 is less 
active (only 27% hydrolysis). 

The base-induced hydrolysis involves both hydroxyl groups of 
the ribose. Thus, deoxyribonucleotides should not be sensitive 
to the action of basic polypeptides. Indeed, poly(Leu-Lys) had 
no activity on d(pA)8. 
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While there has been considerable recent progress in the un­
derstanding of the thermodynamics and kinetics of reversible 
reactions of dioxygen (O2) with metalloproteins (e.g., hemoglobin, 
myoglobin, hemerythrin) and synthetically derived iron(II)2"7 (and 
cobalt(II)) complexes,2,7 data for Cu^-O2 binding in the oxygen 
carrier hemocyanin (Hc)2a,c'6,8,9 are limited, and no kinetic/ 
thermodynamic information has been available for synthetic 
copper-dioxygen systems.10"13 Such information is of critical 
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importance in determining the contributions of environmental 
factors such as ligation, coordination geometries, and medium 
effects toward O2 affinities and differential binding of 02/C0.2'3'13 

Elucidation of these factors is necessary in the development of 
(i) an understanding of biological dioxygen utilization, (ii) practical 
dioxygen carriers,2b,3,!3 and (iii) the field of metal-catalyzed ox-
idations/oxygenations with molecular oxygen.14 Here, we report 
the first thermodynamic and kinetic data for two synthetic systems 
in which dinuclear copper(I) complexes exhibit reversible O2-
binding behavior. 

The first case involves a copper monooxygenase model sys­
tem,15,16 where the kinetic analysis17,18 indicates that 1 reacts with 
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O2 reversibly forming a dioxygen adduct 2, which irreversibly 
decomposes in a first-order process giving the hydroxylated product 
3.18 The spectrum of the intermediate, 2, has a typical absorption 
band at 435 nm17c in accord with that of related complexes 
[Cu2(L)(O2)]

2"1" (L = dinucleating ligand), which are stable at 
low temperature.12a,15b The 02-binding process is effectively a 
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Table I. Summary of Derived Kinetic and Thermodynamic Parameters for Reversible Dioxygen Binding Systems^ 

Kr, (M-1 S-1) 

AH* (kJ/mol) 

AS" (J/mol-K) 

*off IS"1) 

AH* (kJ/mol) 

Ai" (J/mol-K) 

*«, (koJKtt) 

AH0 (kJ/mol) 

AS" (J/mol-K) 

1 + O2 T± 2 -~ 3 

533 (Jk1, -80 0C) 
4570 (Jk1, 20 0C) 

8.15 ±0.07 

-146.9 ± 0.3 

1.8 X 10"5 

(/L1, -80 0C) 
808 (Jk.,, 20 0C) 

70 ± 1 

50 ± 6 

2.7 X 106 (-80 0C) 
6 (20 0C) 

-62 ± 1 

-200 ± 6 

4 + O2 ; 

>106M-> s-

7.6 X 107 (-
58 (20 0C) 

-66.2 ± 0.5 

-192 ± 2 

=± 5 

' ( J t + ) 

•80 0C) 

deoxyHc + 
O2 P± oxyHc" 

5.7 X 1074 

3.1 X 107 ' 
3.4 X 10™ 
13' 
31* 
-59 ' 
¥ 

100* 
60' 
1000* 
59' 
75.7d 

- 1 3 ' 

5.7 X 1056 

5.2 X 105 ' 
-46 (20 0C)* 
-31.2' 
12.8' 
-67 (20 °C)d 

-7 .5 ' 
128' 

"Selected data at 25 0 C, see ref 2 and 6 for summaries and other data. bP. interruptus (monomer, 7"-state), ref 6. "P. interruptus (hexamer, 
.R-state), ref 9a. dP. interruptus (monomer, T-state), ref 9a. 'Low and high O2 affinity forms of L. hierosolima, ref 9c. f Molar concentrations were 
used throughout for the calculation of kinetic and thermodynamic parameters. 

one-step process; no evidence for other intermediates (e.g., mo­
nonuclear Cu-O2) was found. 

As can be seen from the data (Table I), the rapid reaction of 
O2 with the dicopper(I) complex 1 is characterized by the expected 
low activation enthalpy and a large negative activation entropy. 
The spectroscopic observation of the dioxygen/copper complex 
intermediate (2) is facilitated by the favorable relative rates of 
formation of 2 and its decomposition to 3, i.e., ^1 [O2] > Ie2 at low 
temperatures ([O2] = 2 X 10"3 M).18b'° The thermodynamic 
stability of the dioxygen/copper adduct (intermediate) is clearly 
derived from the strong binding (AiP = -62 ± 1 kJ/mol). The 
disappearance of the Cu2-O2 adduct at room temperature is not 
due to unfavorable kinetics but rather the thermodynamics, with 
a negative entropy AS0 = -200 ± 6 J/mol-K. 

We have also examined another reversible Cu(I)/02 binding 
system, 4 + O2 <=* 5.12b,15b The analysis also provides for the 
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probably with the aid of a bridging ligand.20 The 02-binding 
affinities of hemocyanins (25 0C) are in the range of 10s—106 

M-'.2a'c'6 Our synthetic systems approach such values but only 
at low temperatures. The large negative standard enthalpy and 
entropy of dioxygen binding observed in our systems (Table I) 
appear to be typical for synthetic or biological Fe or Co dioxygen 
carriers.'*0'7'13 However, iff0 and ALS0 values for hemocyanins2**0'9 

are less negative, or even positive, depending on the form of this 
highly cooperative 02-binding protein.W'22 Since a large 
negative AS0 can be accounted for in large part by the loss of 
degrees of freedom of O2 upon coordination,23 the small (negative 
or positive) AS0 values for hemocyanins are likely due to favorable 
protein conformational and Cu-ligating changes associated with 
dioxygen binding.21-22 

Further kinetic/thermodynamic investigations are planned 
within the several families of dioxygen carriers in our hands. 
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existence of a simple reversible system, and the values of AH° 
and AS0 determined are very close to those obtained for the system 
1 ?̂  2 (Table I).19 However, the rate of reaction with dioxygen 
was too fast to be measured even at -100 0C, indicating k+ > 
1 X 106 M"1 s"1. Forcing the two copper(I) ions into close 
proximity by the presence of a bridging phenoxo ligand in 4 
apparently causes a dramatic enhancement of the rate of reaction 
with O2. 

The data obtained here may be compared to those reported for 
various hemocyanins (Table I).28-0'6'9 The on rates for oxygenation 
(Ic0n) of hemocyanins are on the order of IOMO7 M"1 S"1.20,6 Such 
values are not approached for reactions of O2 with 1, but ap­
parently they are in 4 (Table I), suggesting the importance of the 
protein matrix in holding the Cu(I) ions in close proximity, 
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